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Abstract

Although combinatorial auctions have received a great deal of attention from the
computer science community over the past decade, research in this domain has
focused on settings in which a bidder only has preferences over the bundles of
goods they themselves receive, and is indifferent about how other goods are al-
located to other bidders. In general, however, bidders in combinatorial auctions
will be subject to externalities: they care about how the goods they are not them-
selves allocated are allocated to others. Our aim in the present paper is to study
such combinatorial auctions with externalities from a computational perspective.
We first present our formal model, and then develop a classification scheme for
the types of externalities that may be exhibited in a bidder’s valuation function.
We then develop a bidding language for combinatorial auctions with externali-
ties. The language uses weighted logical formulae to represent bidder valuation
functions. We then investigate the properties of this representation: we study
the complexity of the winner determination problem, and characterise the com-
plexity of classifying the properties of valuation functions. We then present two
approaches to winner determination for our bidding language: an exact approach
based on integer linear programming, and approximation methods.

1. Introduction

Combinatorial auctions have been closely studied over the past decade (Cram-
ton et al., 2006). In a combinatorial auction, a number of goods are simultane-
ously put to auction, and agents can submit bids for bundles of goods. Within the
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computer science/Al literature, four main aspects of combinatorial auctions have
been considered: bidding languages, where the goal is to design compact, expres-
sive, natural, and computationally tractable languages for defining bidder valu-
ation functions (Nisan, 2006); mechanism design, where the goal is typically to
design bidding, allocation, and payment schemes so that bidders are incentivised
to truthfully report their valuation function (Nisan, 2007); winner determination,
where the goal is typically to compute efficiently a social welfare-maximising
allocation of goods to bidders, given a representation of bids/preferences (Sand-
holm, 2006; Miiller, 2006); and preference elicitation, where the goal is to elicit
efficiently a valuation function from a potential bidder.

Although details differ, a common model for such combinatorial auctions
is the following. We have a set Z of goods to be auctioned to agents N/ =
{ay,...,a,}, and each agent a; € N has preferences represented by a valua-
tion function, v; : 22 — R, assigning a numeric value to every possible bundle of
goods. Implicit within this framework is a rather significant (and arguably rather
unrealistic) assumption: that bidders only have preferences over the allocation of
goods that they receive, and are indifferent about how other goods are allocated
to other agents. This point is very well-known in the economics literature, where
the term externality is used to describe the effect that a transaction has on an indi-
vidual that is not directly involved in the transaction. If the individual is adversely
affected by the transaction, then the externality is said to be negative, while if
the individual benefits from the transaction, then the externality is positive. In a
combinatorial auction with externalities, bidders have preferences not just over
the bundles of goods they receive, but also over the way in which other goods are
allocated to others. This holds even in the extreme case where a bidder is allocated
no goods: they may still have preferences over the way in which goods are allo-
cated to others, and if the externalities are sufficiently severe, such a bidder may
even be motivated to pay the auctioneer to prevent another agent being allocated
some good, even though they themselves are allocated nothing: see Jehiel et al.
(1996) for a case study of this, where the goods in question are nuclear weapons!

We emphasise that this is not an artificial consideration: externalities are ex-
tremely common in auctions. For example, consider spectrum auctions. In such
auctions, telecommunications companies bid for licenses to exploit electromag-
netic spectrum. From the point of view of a company, it is beneficial to have
licenses in geographically contiguous locations — this makes it easier/cheaper to
provide services. Conventional combinatorial auction models can directly capture
such preferences. However, from the point of view of a company, it is also bad
if another company is allocated licenses in geographically contiguous locations,

2



since this makes them more competitive. This is a negative externality, which can-
not be captured using conventional combinatorial auction models (Cramton et al.,
2006).

In this paper we consider the computational aspects of combinatorial auctions
with externalities. We begin by presenting our formal model. In Section 3, we
develop a classification of some types of externalities that may be exhibited in
a bidder’s valuation function. In Section 4, we develop a bidding language for
combinatorial auctions with externalities. The language uses weighted logical
formulae to represent bidder valuation functions (cf. Ieong and Shoham, 2005;
Lang et al., 2006; Uckelman et al., 2009; Elkind et al., 2009; Uckelman et al.,
2009). Given this representation, we investigate the complexity of the winner de-
termination problem, and the complexity of classifying the properties of valuation
functions we identified in Section 3. We then present two approaches to winner
determination for our bidding language: an exact approach based on integer linear
programming, and an approximation method.

2. Basic Definitions

We start by assuming a finite, non-empty set Z = {zi,...,z,} of atomic goods.
We assume these goods are indivisible and that each good is unique. We use
Z,7',7Z,,...as variables ranging over subsets of Z. Next, we assume a finite, non-
empty set N' = {ag,ay,...,a,} of agents (a.k.a. bidders). We use G,G',G1, ...
as variables for subsets of N, and we refer to such subsets as groups.

Allocations: An allocation is a function o : ' — 22 such that a(ay), . . ., a(a,)
partitions Z. The intended interpretation is that «v(g;) is the set of goods allocated
to agent g; under allocation «. Let A(Z, ') denote the set of all possible alloca-
tions over N, Z. Where N, Z are clear from context, we omit reference to them
and write 4. Observe that the inverse of an allocation « defines a mapping from
Z to N; we denote this inverse by &. Thus if &(z) = a;, then good z € Z is
allocated to agent a; € N under allocation a, i.e., z € a(q;).
When we need to write allocations explicitly, we use the following notation:

{(Zo;a0), (Z1;a1), ..., (Zu;an) }

with the intended meaning that Z; is the bundle of goods allocated to agent a;.



Example 1. Suppose N' = {ap,a,,a:} and Z = {z1,22}. Then the feasible
allocations are:

ar = { ({z,22}5a0), (0;a0), (0; as) }
ar = {(0;a0), ({z1,22}a1), (0;a9) }
ay = { (0;a0), ({zi};an), ({z2}; a2) }
as = { ({z};a), H{a} 1), (0; az) }
as = { ({z};a), ({ze};a1), (0; az) }
as = {(0;a0), (0;a1), ({z1,22};a2) }
ag = { (0;a0), ({ze}; 1), ({z1};a2) }
Qr = {({Zz} a), (0; ar), ({z1};a0) }
ag = { ({z1};a0), (0;a1), ({z2}; a2) }

Valuation Functions: In the literature on combinatorial auctions, a valuation
function for an agent a; € N is usually understood as a function v; : 22 5 R, ie.,
a function that gives the value v;(Z) to agent a; € N of the bundle of goods Z C Z.
Implicit in such a definition of valuation functions is the idea that a valuation
depends only on the goods that are allocated to a;, and not on the way that goods
are allocated to other agents. In the present paper, we will be concerned with
valuation functions for agents that take into account not just the goods allocated
to that agent, but also the way that goods are allocated to others. Thus, for our
purposes, a valuation for agent a¢; € N is a function v; : A — R. Let V(Z,N)
denote the set of valuation functions over Z, N; again, where context makes Z, N
clear, we simply write V.

Example 2. For the allocations as defined in Example 1 let valuation functions
for every agent involved in the auction be:

Vaecavo(a) =0

vi(ap) =0 vi(as) =7 valag) =1 wolap) =4
Vl(Oél) =12 V1<046> =4 V2<Oél) =6 VQ(CYG) =5
vi(ap) =4 vi(ar) =0 wv(ag) =3 w(ay) =3
Vl(O[3> =6 V1(O[8> =2 VQ(Oég) =35 VQ(Oég) =3
V1(Oé4) =10 VQ(Oz4) =9

Combinatorial Auctions with Externalities: Bringing the above components
together, we say a combinatorial auction with externalities is a tuple

<Z,N,V1,..-,Vn>
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where Z is the set of goods, N is the set of agents, and v; € V is the valuation
function for agent a; € N.

Winner Determination: The WINNER DETERMINATION problem in this setting
is analogous to conventional combinatorial auctions: given (Z, N, vy, ..., v,), the
aim is to find an allocation o* that maximizes social welfare:

o’ = argmax vi(a).

Before we can say much about this problem, of course, we need to fix on a repre-
sentation for the valuation functions v;; we consider this below.

It is worth making some remarks on the relationship of this problem to the
standard winner determination problem, as the existence of externalities raises a
number of additional issues. Notice that bidders in our setting have valuations over
allocations in which no item is assigned to them. If such externalities are negative
and severe enough, then bidders will have an incentive to pay the auctioneer for
not selling anything. Perverse as it may seem, such a solution might be efficient
from the point of view of utilitarian social welfare. In Jehiel et al. (1996), the
following example of this situation is given. In the early 1990s, some nations
from the former Soviet Union found themselves in possession of nuclear weapons,
even though they themselves had no aspirations to be a nuclear state. Both Russia
and the USA were concerned about the nuclear weapons falling into the wrong
hands. They therefore made payments to these countries, in effect to ensure that
the nuclear weapons were not made available to third parties. Such a possibility
is not taken into account in most standard auction mechanisms: the auctioneer is
not paid by those who do not win the item not to sell it.

3. Allocations and Valuations

Implicit in our definition of valuation functions v; : A — R is the idea that the
value an agent obtains is not dependent only on the goods it is allocated, but also
on the way that other goods are allocated to other agents. Our aim in this sec-
tion is to dig deeper into this idea: we investigate the structure of allocations and
valuation functions, with the ultimate aim of classifying the different types of ex-
ternalities that may be exhibited by valuation functions. Before we can classify
valuation functions in this way, we first need to investigate the structure of allo-
cations.



3.1. Allocation Structure

We say that two allocations «, o are individually equivalent with respect to a
group of agents G C N if the allocation of each agent ¢; € G under « is the
same as its allocation under o’. We denote the fact that o and ' are individually
equivalent with respect to G by a ~g «'. Formally:

Definition 1 (Individual equivalence w.r.t. G).
a1 ~g Q2 lff Va,- eG: C(l((li) = Oéz(al').

Example 3. Recall Example 1. For G = {ao}, there are the following individual
internal equivalence relationships oy ~g ao ~g a5 ~g Qg Q3 ~g Qp, and
ay ~g ag. For G = {ai}, we have ag ~g a5 ~g ay ~g Qg, ag ~g as, and
Qy ~g Og. For G = {ag}, g ~g (1 ~g Q3 ~g Oy, Oy ~g (g, and Qg ~g .
Finally, for any combination of two agents from N, i.e. {ap,a1}, {ao,as} and
{ay, a3} as well as for N, no equivalence of this type exists.

We say that two allocations a1, ap are collectively equivalent with respect to
a group of agents G C N if the allocation to the group G under o is the same
as its allocation under a. Note that with this notion, we are not concerned with
how goods are allocated within the group G, only with the set of goods that are
allocated to G. We denote the fact that a;; and v are collectively equivalent with
respect to G C N by a; ~g a». Formally:

Definition 2 (Collective equivalence w.r.t. G).

o gy iff | oa(a) = aala).

a,€G a,€G

Example 4. Example 1 again. For G = {ag, a1}, we have oy =g a1 =g az Xg
u, (g g ag, and og g oy,

For singleton groups G = {a;}, individual and collective equivalence coincide:
Va,- € N, \V/Oél, Qg € A : Q. ~{g} Qg iff aq %{ai} Q9.
Furthermore, all allocations are collectively equivalent w.r.t. G = N:

Vai, o0 € A: g = .



We can also define individual and collective equivalence with respect to sets of
goods, rather than with respect to sets of agents. We say two allocations a; and
ap are individually equivalent with respect to a set of goods Z C Z if these goods
are allocated to the same agents in both oy and ais. With a slight abuse of notation,
we write o ~z 5 to mean that goods Z C Z are allocated to the same agents in
o as in . Formally:

Definition 3 (Individual equivalence w.r.t. Z).
a1 ~Yz Qo ljf VZ S dl(Z) = OZQ(Z).

Example 5. With respect to Example 1, if Z = {z1} then we have: o ~z gy ~z
g, () ~z Qg ~z (3, and s ~z o ~z Az,

With another abuse of notation, we write oy ~; a5 to mean that or; and o, agree
on the group of agents that receives goods Z C Z:

Definition 4 (Collective equivalence w.r.t. Z).
o~z g iff {ai(z) |z € Z} = {da(z) |z € Z}.

Again, for singleton sets of goods Z = {z}, individual and collective equivalence
w.r.t. Z coincide:

Vze ZVayj,ap € Aoy~ ap iff oy =y as.

Example 6. With respect to Example 1, if Z = {z1, zo} then we have for example
g =y g and op Xz Qg.

3.2. Valuation Function Structure

It makes sense to classify the various different types of externality that may
exist in our setting. We do this with reference to the properties of allocations that
were discussed above. Later in this paper, we will consider the computational
problem of classifying valuation functions with respect to these properties.

We start with the simplest case: no externalities! We say that a valuation
v; © A — R for agent a; € N is externality free if it only depends on the goods
allocated to agent a;. Formally:

Definition 5 (Externality Freeness). Valuation functionv; : A — R is said to be
externality free iff:

Vo, as € Aoy~ o implies vi(on) = vi(ae).



Example 7. Consider the auction defined in Examples 1 and 2. Valuation func-
tion v is trivially free of externalities, since it gives O for all allocations. How-
ever, vy is subject to externalities. For example, although oy ~,, g, we have
vi(ay) # vi(ag): in this case, if ay is allocated good zs, then it would prefer as
not to be allocated z;.

Of course, the point of the paper is to consider valuation functions that do not
have this property. The next property we consider is that externalities take a very
simple structural form, where a valuation function can be additively decomposed
into a collection of simpler valuation functions.

Definition 6 (Additively decomposable valuations). Formally, v; : A — R is
said to be additively decomposable if there exists a collection of n functions {v! :
22 5 R:ieN}

vii22 5 R
V222 5 R
V22 5 R

such that Vo € A we have:

vi) = 3 v(ala)).

ajGN
An even simpler kind of valuation function is as follows.

Definition 7 (Primitively decomposable valuations). A valuation function v; :
A — R is said to be primitively decomposable if there exists an m x n matrix M;
of real numbers such that Vo € A:

vila) =Y Y Mik,j).

GEN zZea(a))

Thus, with primitively decomposable valuation functions, M;|k,j] represents the
value that agent a; would obtain if good z; was allocated to agent a;. Notice that
primitively decomposable valuation functions have a very succinct representation:
we only need to represent an m X n matrix of reals.

Both of the above possibilities, of course, represent somewhat extremal cases.
We therefore consider other types of externality, as follows. First, suppose that
an agent only cares about the goods received by a particular group of agents;



the particular allocation of goods to agents outside this group or within it are
not a concern. (Externality freeness is a special case where the group of agents
in question is a singleton consisting of the agent itself.) There are two further
obvious possibilities here. The first is that the valuation function is sensitive to
the allocation of goods to players within the group, while the second is that the
valuation function is only sensitive to the goods that are allocated to the group
as a whole (i.e., is not sensitive to which agents within the group receive which
particular goods, only to the goods allocated to the group overall).

We then say that a valuation function v; is individually sensitive to G C N if
the values it assigns only depend on the allocations of goods to individual mem-
ber of G. Formally, individual sensitivity of v; with respect to G is given by the
following condition:

Definition 8 (Individual sensitivity w.r.t. G). A valuation function v; is said to
be individually sensitive w.r.t. G C N iff:

Yoy, a9 € A aq ~g ag implies vi(aq) = vi(ag).

A valuation function v; is collectively sensitive to G C N if the values it assigns
only depends on the collective allocation of goods to G.

Definition 9 (Collective sensitivity w.r.t. G). A valuation function v; is said to be
collectively sensitive w.r.t. G iff:

Va,o € A:a=ga implies vi(a) = vi(d).

In a similar vein to the above, we might consider agents that are sensitive only
to how a particular set of goods are allocated. We will say a valuation function v;
is individually sensitive to goods Z C Z if the value of v; only depends upon who
is allocated goods in Z.

Definition 10 (Individual sensitivity w.r.t. Z). A valuation function v; is said to
be individually sensitive w.r.t. Z C Z iff:

Vo, as € A:aq ~z ag implies vi(ag) = vi(as).

And finally, we can think of agents who are concerned not with which individuals
receive which goods, but which groups receive them.

Definition 11 (Collective sensitivity w.r.t. Z). A valuation function v; is said to
be collectively sensitive w.r.t. Z C Z iff:

Vag, a0 € A aq =z ay implies vi(aq) = vi(ag).



4. A Bidding Language

A common problem now arises: how to succinctly represent valuation functions
vi = A — R. In the literature on bidding languages for combinatorial auc-
tions (Boutilier and Hoos, 2001; Nisan, 2006), a common approach is to allow
a bidder to submit a number of atomic bids of the form (Z, p), where Z C Z and
p € R,. The semantics of a bid (Z,p) is that “I would be prepared to pay p to
be allocated goods Z”. An agent’s atomic bids are aggregated into a valuation
function using, for example, “OR” or “XOR” constructions (Nisan, 2006). This
approach does not work for our scenarios, since an agent is not just concerned
with goods allocated to himself, but also about how goods are allocated to others.
We instead propose a weighted rule bidding language for combinatorial auctions
with externalities, which derives inspiration from the weighted formula represen-
tations that have been used to represent preferences and valuation functions in
other areas of AI (cf. leong and Shoham, 2005; Lang et al., 2006; Uckelman et al.,
2009; Elkind et al., 2009; Uckelman et al., 2009). With this approach, we specify
agent @;’s valuation function v; as a set of rules R;, with each rule taking the form
(condition, value), where condition is a logical predicate over allocations .4, and
value € R . To obtain the value of an allocation « given a set of rules R, we sum
the values x of all the rules (¢, x) in R whose condition ¢ is satisfied by «.

A Language for Conditions: First, we define a language for the conditions of
our rules. The condition language is essentially that of conventional propositional
logic, except that primitive propositions are replaced with expressions for refer-
ring to allocations. These expressions are of the form a; : z, where a; € N is an
agent and z € Z is a good. The intended interpretation of the expression g; : z is,
naturally enough, that agent g; is allocated good z. We refer to an expression of
the form a; : z as an atomic allocation. To obtain the condition language, we allow
atomic allocations to be combined with the conventional connectives of classical
Boolean logic (—, V). Formally, the grammar for conditions is as follows:

pu=a;:z|p|leVe

where a; € N and z € Z. The other connectives of classical Boolean logic (A —
“and”, — — “implies”, <> — “if, and only if”’, etc.), may be defined as abbreviations
in terms of —, V in the conventional manner (e.g., ¢ — ¥ = (—p V ¥)).

Where o € A is an allocation and ¢ is a condition, we write a = ¢ to mean
that the allocation « satisfies condition . Formally, the relation |= is inductively
defined as follows:
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a Ea;:ziff z € o(a);
a | —p iff it is not the case that o = ;
alEeVyiffal=pora = 1.

Where ¢ is a condition in this language, let A'(¢) denote the set of agents named
in ¢, and let Z () denote the set of goods named in . For example, if ¢ = (a; :
23) A (aa @ z7) then N () = {a1, a1} and Z(p) = {z3,27}-

Rules: A rule is a pair (¢, x) where ¢ is a condition and x € R, is a real. A set
of rules R defines a valuation function vy as follows:

vr(a) = Z X;

(pixi) ER:af=p;
If all rules in 'R have equal weight, then we say that ‘R is homogeneous.
We refer to our representation as the weighted rule representation.

4.1. Basic Properties of Weighted Rules

We first establish basic properties of weighted rule representation:

Theorem 1.

1. The weighted rule representation can capture all valuation functions. More
precisely, Vv € V, AR such that v = vg.

2. For some classes of valuation functions, the weighted rule representation is
exponentially more succinct than the explicit representation.

3. For some classes of valuation function, the smallest weighted rule represen-
tation requires a number of rules that is exponential in [N U Z|.

Proof: For item (1), it suffices to note that given an allocation o we can define a
“canonical” condition ¢,, such that o/ |= ¢, iff &/ = «:

ea= N\ | N az

aieN \z€a(a)

Items (2) and (3) follow easily from well-known results in Boolean function the-
ory: essentially, Boolean formulae provide a representation that in many cases
is exponentially more succinct than the extensive representation, but in the worst
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case we need formulae of size exponential in the number of Boolean variables (We-
gener, 1987).

0

Now, although our condition language borrows much from Boolean logic, it is
important to understand that the logic of conditions is rather different. To see this,
consider the following. Let us say a condition is positive if it contains only the
Boolean operators V, A. Negation cannot be defined in classical Boolean logic
using only these operators, and as a consequence, the satisfiability problem for
positive Boolean formulae is trivially solvable in polynomial time. However:

Theorem 2. The satisfiability problem for positive conditions is NP-complete.

Proof: Membership is obvious; for hardness we reduce SAT. Let (o be an instance
of SAT over Boolean variables xi, ..., x;, which we assume w.l.0o.g. is in CNF.
We obtain a condition ¢* from ¢ by systematically substituting for each positive
literal x that occurs in ¢ the atomic allocation a : x, and for each negative literal
—x that occurs in ¢ the atomic allocation @, : x. Notice that ¢* is a positive
condition. Then define N, = {ar,a,} and Z, = {xy,...,x}. Now, there exists
an allocation o € A(Z,,N,,) such that o |= ¢* iff ¢ is satisfiable. 0

Note that this result does not imply that negations in our condition language
can be defined using positive conditions! Theorem 2 raises an interesting question,
namely, for what classes of condition is the satisfiability problem easy. We now
identify one such class. Let us say a formula ¢ is read once if no good is named
more than once in ¢ !. For example, the formula (ag : z9) A—(aq : z;) is read-once,
while the formula (aq : z9) V (a; : zo) is not (since 7y is named twice). Then the
following is easy:

Theorem 3. All positive read-once conditions are satisfiable, and moreover, it is
possible to compute a satisfying allocation for a positive read-once formula in
polynomial time.

The proof is simple, but is used later, and so we state it in full.

Proof: Construct the parse tree of condition ¢: interior nodes in the tree will be
either A or Vv, while leaves will be atomic allocations. Let sy be the root of the

'Read-once formulas have been studied for combinatorial auctions with no externalities both
from a preference elicitation and winner determination perspective in Zinkevich et al. (2003).
Note that our usage differs slightly from the regular use of the term “read once” in logic, where it
is usually taken to mean that no Boolean variable occurs more than once in a formula.
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tree. We construct a function L which maps nodes of the tree to sets of atomic
allocations. We start with leaves. If a leaf node s is a; : z then define L(s) =
{a; : z}. We then iteratively repeat the following, until L is defined for all nodes
in the parse tree: For each interior node s such that L is defined for all of s’s
children, then define L(s) as follows: if s is an V node, then define L(s) to be
the smallest size set L(s’) such that s’ is a child of s (if there are multiple such
children, pick the one that is leftmost in the parse tree); if s is an A node, then
define L(s) = L(s1) U --- U L(s,) where sy, ..., s, are the children of s. When L
labels all states, define allocation o, by a,(a;) = {z | a; : z € L(so)}. Note that
since ¢ is read once, every good is allocated to at most one agent, so «, is well
defined. Then «, |= . 0

4.2. Classifying Valuation Functions

In Section 3, we gave a preliminary classification scheme for valuation functions.
Now that we have a representation for valuations, it is interesting to ask how hard
it is to classify valuation functions represented using this scheme. We start with
the decision problem EXTERNALITY FREENESS, where we are given a rule set R
(over Z, N), and we are asked whether v is free of externalities.

Theorem 4. EXTERNALITY FREENESS is co-NP-complete.

Proof: Membership is obvious. For hardness, we show that the complement
is NP-hard by reduction from SAT. The complement problem involves checking
whether: Jag, a0 € A @ a1 ~, ay and vi(ay) # vi(as). Let ¢ be a SAT
instance over variables xi,...,x; which we assume w.l.o.g. is in CNF. Define
N = {ar,a.,a;}, Z = {x1,...,x,d}, and define condition ¢’ by replacing
positive literals x; in ¢ by (at : x;) and negative literals —x; by —(at : x;). Then
define p* = ¢’ A (ay : d), and define R = {(¢*,1)}. It is easy to see that then ¢
is satisfiable iff vz is not externality free. i

We can also consider the decision problems: INDIVIDUAL SENSITIVITY W.R.T.
G, COLLECTIVE SENSITIVITY W.R.T. G, INDIVIDUAL SENSITIVITY W.R.T. Z,
and COLLECTIVE SENSITIVITY W.R.T. Z. For example, in the problem INDI-
VIDUAL SENSITIVITY W.R.T. G, we are given a rule set R (over Z,N), and a set
of agents G C N, and we are asked whether vy is individually sensitive w.r.t. G;
the other problems are formulated in the obvious way. Using Theorem 4, we can
directly prove:
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Theorem S. The decision problems INDIVIDUAL SENSITIVITY W.R.T. G, COL-
LECTIVE SENSITIVITY W.R.T. G, INDIVIDUAL SENSITIVITY W.R.T. Z, and COL-
LECTIVE SENSITIVITY W.R.T. Z are all co-NP-complete.

Proof: The first two results follow from Theorem 4; the others can be obtained
by similar reductions, which we omit in the interests of space restrictions. We
show that the complement problem is NP-hard by reduction from SAT. In the
complement problem, we are asked whether:

Jag,an € A ay ~g as and vi(aq) # vi(a).

Let ¢ be an instance of SAT over Boolean variables xi, . .., x;, which we assume
w.l.0.g. is in CNF. We create an instance of INDIVIDUAL SENSITIVITY W.R.T.
G as follows. Define N' = {ar,a,,a4,a.}, and Z = {x;,...,x,d}. Define
©* using the same transformation as used in the proof of Theorem 2, and define
= ¢*A(aq : d). Define R = {(¢,1)} and G = {ar,a,}. We claim that ¢ is
satisfiable iff the instance created is not individually sensitive to G. (—) Assume
 is satisfiable; then we can construct an allocation «; yielding vg(a) = 1 in
which a, is allocated good d, but there is another allocation differing only in the
allocation of d (to a,) in which vz (az) = 0. Hence the instance is a positive
instance of the problem. (<—) Assume the instance is individually sensitive to G.
Then there exist valuations «, ay such that vg(a;) = 1 and vg(a2) = 0. Since
vr(a1) = 1, then a; = v, which implies oy = ¢*, and so from «; we can
construct a satisfying assignment for (. i

5. Winner Determination

Let us now turn to the WINNER DETERMINATION problem for the weighted rule
representation. An instance of the problem for this representation will be a tuple
(Z,N,Rq,...,R,), where for each a; € N, R, is arule set defining a;’s valuation
function.

Complexity: We start by establishing some results on the complexity of the WIN-
NER DETERMINATION problem assuming the weighted rule representation of val-
uation functions:

Theorem 6.

1. The WINNER DETERMINATION problem for the weighted rule representa-
tion is FPN"-complete.
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2. The WINNER DETERMINATION problem for homogeneous rule sets is
ppNPllog [RiU - URll_complete.

Proof: For (1), first notice that the associated decision problem (does there exist
an allocation o* with social welfare at least k) is easily seen to be NP-complete
from Theorem 2. This implies membership in FP"*, since all optimization prob-
lems whose decision problem is in NP are in FP"* (Papadimitriou, 1994, p.416).
For hardness, we reduce the optimization problem MAX WEIGHT SAT (Papadim-
itriou, 1994, p.416). An instance of MAX WEIGHT SAT is given by a set of
propositional clauses 1, . . ., 1,, over Boolean variables x, . . . , x5, together with
integer weights wy, ..., w, for each clause. The aim is to find the valuation that
maximises the sum of weights of clauses satisfied by the valuation. As in the
SAT reduction of Theorem 2, we create two agents N' = {at,a,}. For each
clause v; with weight w;, we create a rule (¢, w;) in R+, where ©)* is obtained
by the same transformation on Boolean formulae that we used in the reduction
of Theorem 2: replace positive literals x with at : x and negative literals —x
with a; : x. Set Ry = (. Any social welfare maximising allocation a* for
this problem will yield a solution to the given MAX WEIGHT SAT problem: set
a variable x to true if o* allocates it to ar, and set it false if o* allocates it to
a . Notice that the form of the instance constructed matches the statement of the
theorem. For (2), note that if all rules have equal weights, then an allocation that
maximises social welfare will be one that maximises the number of rules with
conditions satisfied. Next, notice that the following problem is trivially seen to be
NP-complete: “given (N, Z,R4,...,R,) and k € N, does there exist an alloca-
tion satisfying at least k rules?” Now, there are |[R; U - - - U R, rules in total, so
we can find the allocation that maximises the number of satisfied rules by using
binary search, requiring O(log |R; U - -- U R,|) queries to an Np-oracle for the
problem we just described. Our first query will set k = (%1, if the an-

S . RiU--URy|+1 - S
swer is “no” we query with k = [%W , while if the answer is “yes” then

we query with k = (W} , and so on; we converge on the correct value
in O(log |R1 U --- UR,|) queries. Hence the problem is in FpN*log|Ri U~ U Rl
For hardness, we can reduce MAX SAT problem (Papadimitriou, 1994, p.186); the
construction is essentially identical to that used in item (1), with all rule weights

set to 1. i
Exact Winner Determination: Integer Linear Programming is one of the most

successful and widely-used practical approaches to solving computationally com-
plex optimization problems (Ausiello et al., 1999, pp.65—67). We now show how
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the winner determination problem for our weighted rule representation can be
solved by ILPs. First, some definitions are needed. Where ¢ is a condition, then
we denote the set of sub-formulae of ¢ by sf(p):

W xFUsf()Usf(x) ifo=v¢Vxorp=9Ax
sf(p) = ¢ {¥}Usf(¥) if o =
{a; : 7} ifop=a:z,a,eN,z€ Z.

Where R = {(¢1,x1),- .., (¥, %)} is a set of rules, we define the set c/(R) by:
dR)= |J ()

(pixi)ER

Let (Z,N,R1,...,R,) be an instance of the WINNER DETERMINATION prob-
lem using the weighted rule representation: we produce an ILP as shown in Fig-
ure 1. The construction makes use of two sets of variables: for each a¢; € N and
z € Z,avariable alloc(a;, z) € {0, 1}, used to indicate whether good z is allocated
to agent a; in the optimal allocation computed by the ILP (alloc(a; : z) = 1) or not
(alloc(a; : z) = 0); and for each ¢ € cl(R1U---UTR,), a variable 7(¢) € {0, 1},
used to indicate whether the condition v is satisfied by the optimal allocation
computed by the ILP (7(¢)) = 1), or not (7(¢)) = 0).
Notice that the construction yields a polynomial number of constraints.

Theorem 7. Any allocation defined by a solution to the 1LP in Figure 1 for in-
put instance (Z, N, R, ..., R,) is a solution to the WINNER DETERMINATION
problem for (Z. N, Ry, ..., R,).

Proof: First notice that any solution does indeed define an allocation, in that
it allocates every good to exactly one agent by constraint (4). Next, let a* be an
allocation defined by a solution o to the ILP: we claim that Vo € cl(R,U---UR,),
a* = @ iff 7(p) = 1 in the solution . The proof is by induction on the structure
of ¢. The inductive base is for atomic allocations a@; : z, and is given by (5).
Now assume the result is proved for strict sub-formulae of (. For the inductive
step, we reason by cases: the case where ¢ is of the form ¢ = —1 is given by
constraint (6); ¢ = 1 V x is given by constraints (7)—(9); and ¢ = ¥ A x is given
by constraints (10)—(12). Finally, the objective function (1) ensures the allocation
is optimal. Note that the only unknowns are variables alloc(a;,z); all variables
7(1)) are dependent. Finally, note that the values x; in the objective function (1)
are constants. 0
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maximize:

subject to constraints:

7(¥,5)

alloc(a;, z)

Z alloc(a;, z)

a,-EN

oo ) x M
(pixi)€(R1U--URy)

e {0,1}

forally € cl(RyU---R,) (2)
e {0,1}

foralla; e N,z€ Z (3)
= 1

forallz € Z 4)
= alloc(a;, z)

foralla;: z€cl(RyU---UR,) (5)
= 1-7(0)

forall -y € cl(RyU---UR,) (6)
< 7(¥)+7(x)

forallyy Vxy € cl(RiU---UR,) (7)
> 7(¥)

forallyy Vxy € cl(RiU---UR,) (8)
> 7(x)

forallyy Vx €cl(RiU---UR,) (9)
< (1Y)

forall) Ax € c(RyU---UR,) (10)
< 7(x)

forallp A x € cl(RyU---UR,) (11)

> 1-(A=7@)+ 1 -7(x))
forallyp A x € cl(RyU---UR,) (12)

Figure 1: ILP for winner determination.
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Approximate Winner Determination: The ILP framework above of course has
worst case running time exponential in the size of the auction. This raises the ques-
tion of whether it is possible to find a polynomial time approximation algorithm
for winner determination, i.e., an polynomial time algorithm that is guaranteed to
compute an allocation with some guarantee of performance (Ausiello et al., 1999).
We start with a negative result.

Theorem 8. The WINNER DETERMINATION problem with the weighted rule rep-
resentation cannot be approximated in polynomial time within any approximation
ratio r(m), where r(-) is any polynomial time computable function, unless P = NP.
This claim holds even for problem instances with only 2 agents, and with condi-
tions which are only positive formulae, and with the weights in the weighted rule
representation assumed to all have value 1.

Proof: We use the reduction from the proof of Theorem 2. We encode any
instance of SAT by a polynomial size instance of the WINNER DETERMINATION
problem such that deciding an existence of a feasible solution to the WINNER
DETERMINATION problem with positive social welfare is equivalent to deciding
if the given SAT instance is a “Yes” instance.

Given an instance ¢ of SAT over Boolean variables xi, ..., x,, let ¢©* be the
positive condition obtained as in the proof of Theorem 2, and NV, = {a+,a, }.

We define the following instance of the WINNER DETERMINATION problem.
The set of goods is Z = {x1, ..., x,}, and the set of agents is N' = {at,a, }, and
both agents have the same set of rules, containing just one rule, R,, = R,, =
{(¢", D}

Suppose now that we are given a polynomial time r(m)-approximation algo-
rithm A for the WINNER DETERMINATION problem. We consider two cases.
Suppose first that the given SAT instance is a “Yes” instance, i.e., there exists an
allocation satisfying condition ¢*. This allocation has social welfare 2, and we
can assume that any other allocation (which does not satisfy ¢*) has social wel-
fare 0. Thus, because algorithm A has a finite approximation ratio, in this case, A
has to output an allocation which satisfies ©*.

Suppose now that the given SAT instance is a “No” instance, i.e., there does
not exist any satisfying allocation. Therefore, any allocation has in this case a
social welfare of zero.

We have thus argued that algorithm A can distinguish in polynomial time
“Yes” and “No” instances of the SAT problem, which would imply that P = NP. |

Theorem 8 essentially establishes that there is no hope for a polynomial time ap-
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proximation algorithm with any performance guarantees (even as bad as 27°%("),
where poly(m) is a fixed polynomial of m) which works on all cases (unless P
= NP). However, this does not imply that we cannot identify certain classes of
problem instances that can be approximated. To illustrate this, we give an approx-
imation method for instances with positive read-once rules.

We first prove that the WINNER DETERMINATION problem with only positive
read-once rules still remains hard to approximate, but, on the other hand we will
show that it is much more tractable now.

Two allocations o; : N' — 2%t and oy : N — 222 are compatible if for all
7 € 21N 2y, we have a1 (z) = a»(z). Given a set of positive read-once conditions
C = {¢1,-.., %}, we say that a given allocation «, such that & = ¢ for some
¢ € C, collides with a condition ¢’ € C\ {¢} if there exists an allocation o’ such
that o/ |= ¢ and allocations « and o/ are not compatible.

Theorem 9. Consider WINNER DETERMINATION with n agents and m goods,
where each agent has only one positive read-once rule with weight 1, and assume
that for any condition, any allocation that satisfies this condition collides with at
most A € N other conditions in the instance. Assume also that for any given
condition, any satisfying allocation for this condition allocates at most d € N
goods to the agents.

This problem cannot be approximated in polynomial time within an approxi-
mation ratio of:

n'=%, for any constant § > 0,

AE, for some absolute constant € > 0,
O(d/ log(d)),

4. m'?=9, for any constant § > 0,

won o=

unless P = NP.

In the proof of this theorem, we slightly relax the definition of the WINNER DE-
TERMINATION problem, in that we do not require anymore that a feasible solution
must allocate all the goods, which corresponds now to the fact that we show lower
bounds and we consider this problem as an optimization, and not necessarily de-
cision, problem.

Proof: We present a polynomial approximability-preserving reduction from a
well known d-SET PACKING problem (Garey and Johnson, 1979). The problem
is given an universe U of m € N elements and a family S = {Sy,...,S,} C 2Y
of n subsets of U, each of size at most d (i.e., |S;| < d, for any S; € S), compute
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a subfamily &’ C § of pairwise disjoint subsets (called a packing) of maximum
size, i.e., such that |S’| is maximized.

Given an instance of d-SET PACKING we define the following instance of the
WINNER DETERMINATION problem. The set of goods is Z = U and the set of

agents is N = {1,...,n}. We define the following positive read-once formula:
oi = ( Nes, (i : z)) , which is true if all goods from set S; are assigned to agent i
and, possibly, some other goods outside his set as well. Each agenti € {1,...,n}

has the following rule R; = {(¢;,1)}. It is straightforward to argue now that if
we are given a set packing of size k, then we can easily obtain an allocation with
social welfare of k. And, conversely, if we are given an allocation of social welfare
k, then we can easily obtain a set packing of size k. Observe, however, that in this
case a feasible allocation may also allocate to an agent goods outside his set, but
then we can always repair the solution by simply declaring these goods as not
being allocated to this agent. This does not change the size of the packing. d-SET
PACKING is known to be NP-hard to approximate within O(d/log(d)) (Hazan
et al., 2006), which implies claim 3. The remaining claims follow from a standard
reduction of the d-SET PACKING problem to the MAXIMUM INDEPENDENT SET
problem. We will outline this reduction here for completeness. Recall, that the
MAXIMUM INDEPENDENT SET problem, given an undirected graph G = (V, E),
asks for a maximum size independent set V' C V of G, i.e., a set V' such that
no two vertices from V' are adjacent; formally, for any u,v € V', (u,v) ¢ E.
For a given instance of the d-SET PACKING problem, we define an instance G =
(V,E) of the MAXIMUM INDEPENDENT SET problem as follows: V = § =
{S1,....8,}and E = {(Si,S;) : i #jAS,S; € VAS;NS; # 0}. (We note
here, that we can assume very special instances of d-SET PACKING problem, in
which each e € U appears in precisely two input sets {S1, . .., S, }.) Observe now,
that the defined parameters of the WINNER DETERMINATION problem translate
into the MAXIMUM INDEPENDENT SET instance as follows: |V| = n, |E| = m,
and A is an upper bound on the maximum degree of graph G. The remaining
claims follow now by the hardness results for the MAXIMUM INDEPENDENT SET
problem in Zuckerman (2007); Hastad (1996) (claims 1 and 4), and in Alon et al.
(1995) (claim 2). i

We will now provide almost tight upper bounds (i.e., approximation algo-
rithms) for the instances with positive read-once conditions, which are close to
the lower bounds proven in the first two claims of Theorem 9.

Theorem 10. Consider WINNER DETERMINATION with n agents and m goods,
where each agent i’s set of rules R; has only positive read-once rules (possibly,
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|R;:| > 1) with arbitrary weights, and assume that for any condition, any alloca-
tion that satisfies this condition collides with at most A € N other conditions in
the instance. (Note, that we allow here for arbitrary externalities.) Then, there is
a polynomial time A-approximation algorithm for this problem.

Proof: Let us first observe that a straightforward |R; U - - - U R,,|-approximation
algorithm simply outputs any feasible allocation (obtained using the proof of The-
orem 3) to the condition which has the largest weight, say w. Obviously, the opti-
mum solution cannot have social welfare better than w- R, U- - - UR,|. Now, ob-
serve that | R, U- - -UR,|-approximation garantee becomes n for the instances from
the proof of Theorem 9 which prove n'~°-hardness of approximation. Also, note
that A < |R,U---UR,|, and thus we focus now on A-approximation algorithms.
We now define a A-approximation algorithm. Let initially R = Ry U --- U R,
and allocation 5 = (). As a first step, choose a rule (p,w) € R with the largest
weight w and let « be the allocation obtained for ¢ using Theorem 3. Update
R := R\ {(p,w)} and g := (allocation S combined with ). We now “elim-
inate” all allocations from all rules 'R which collide with « as follows: for any
atomic allocation i : z, i € N, z € Z, which appears in «, replace any occurrence
of the atomic formulae j : z with j € A\ {i} in all conditions in R, with special
symbol f (for forbidden). (Note, that this can be done in linear time.) If after
this operation there are any rules (¢',w’) € R where ¢’ has only f’s as atomic
formulae, then update R := R \ {(¢',w’)} for all such rules. Now, iteratively
choose a rule (¢, w) € R with the largest weight w in the current set R. Now let
« be the allocation obtained for ¢ using Theorem 3 with an additional constraint
that partial allocations containing f are avoided. Update R := R \ {(p,w)},
B := (allocation 5 combined with «). “Eliminate” all colliding allocations: for
any atomic allocation i : z, i € N, z € Z, which appears in «, replace any oc-
currence of the atomic formulae j : z with j € A\ {i} in all conditions in R,
with symbol f. If after this operation there are any rules (¢’,w') € R where ¢’
has only f’s as atomic formulae, then update R := R \ {(¢',w’)} for all such
rules. Repeat iteratively the steps described above until possible. Finally, output
the current allocation (3. Observe first, that despite the fact that this algorithm iter-
ates potentially over sets of exponentially many allocations (each single condition
may have exponentially many feasible allocations), its running time is strongly
polynomial. This follows immediately from the fact that each iteration allocates
at least one more good to some agent; thus the number of iterations is at most
m. To see that its approximation guarantee is A, notice that each time it chooses
the largest weight rule from the current set R (this rule can be satisfied as it must
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contain at least one non-f atomic subformula), and it eliminates at most A other
allocations with smaller weights. Thus, in each such iteration, we gain at least
1/A-fraction of social welfare that any optimum allocation could gain. i

6. Conclusions & Related Work

While there is a large literature on auctions and combinatorial auctions in eco-
nomics and computer science, relatively little work has considered externalities in
auctions. In economics, Jehiel and Moldovanu (2006) is probably the most no-
table example of such work; the authors distinguish between allocative externali-
ties (where agents care about the allocation of items to others), and informational
externalities (where the utility of an agent is affected by the information held by
others). The main focus of their analysis is on mechanism design (e.g., some
impossibility results for mechanism design with informational externalities). In
computer science, Salek and Kempe (2008) consider a special case of a combi-
natorial auction with externalities in which every buyer is interested in only one
specific bundle of goods. For these single-minded auctions they derive sufficient
conditions for a truthful allocation and propose an /m-approximation algorithm
for maximizing social welfare. The algorithm is essentially tight unless P=NP.
Conitzer and Sandholm (2005) present a general formalization of domains with
externalities, and investigate the complexity of various decision problems in this
setting, for several kinds of externality. However, they derive most of the results
under the assumption that the effect of one variable on an agents utility is inde-
pendent of the effect of another variable on that agents utility. This disallows, in
particular, the combinatorial auctions with externalities, unless there are no com-
plementarities or substitutabilities among the items. More recently, a number of
authors have focused on externalities in online advertising (non-combinatorial)
auctions (see, e.g. Ghosh and Mahdian (2008); Kempe and Mahdian (2008); Gio-
tis and Karlin (2008); Ghosh and Sayedi (2010); Reiley et al. (2010)).

Mechanism design is an obvious issue for future work. There is much more
work to be done on both exact and approximate winner determination for our
bidding language. Finally, it would be interesting to look at alternative bidding
languages, allowing more expressive forms of bids to be submitted — see, e.g.,
the discussion in Sandholm (2007).
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